- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000001010000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Schnable, James C (2)
-
Ganapathysubramanian, Baskar (1)
-
Ge, Yufeng (1)
-
Grove, Ryleigh J (1)
-
Grzybowski, Marcin W (1)
-
Jubery, Talukder Z (1)
-
Mathivanan, Ramesh Kanna (1)
-
Mural, Ravi V (1)
-
Nishimwe, Aime V (1)
-
Obata, Toshihiro (1)
-
Pederson, Connor (1)
-
Shrestha, Nikee (1)
-
Sun, Guangchao (1)
-
Torres-Rodriguez, J Vladimir (1)
-
Torres‐Rodriguez, J Vladimir (1)
-
Tross, Michael C (1)
-
Turkus, Jonathan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Estimates of plant traits derived from hyperspectral reflectance data have the potential to efficiently substitute for traits, which are time or labor intensive to manually score. Typical workflows for estimating plant traits from hyperspectral reflectance data employ supervised classification models that can require substantial ground truth datasets for training. We explore the potential of an unsupervised approach, autoencoders, to extract meaningful traits from plant hyperspectral reflectance data using measurements of the reflectance of 2151 individual wavelengths of light from the leaves of maize (Zea mays) plants harvested from 1658 field plots in a replicated field trial. A subset of autoencoder‐derived variables exhibited significant repeatability, indicating that a substantial proportion of the total variance in these variables was explained by difference between maize genotypes, while other autoencoder variables appear to capture variation resulting from changes in leaf reflectance between different batches of data collection. Several of the repeatable latent variables were significantly correlated with other traits scored from the same maize field experiment, including one autoencoder‐derived latent variable (LV8) that predicted plant chlorophyll content modestly better than a supervised model trained on the same data. In at least one case, genome‐wide association study hits for variation in autoencoder‐derived variables were proximal to genes with known or plausible links to leaf phenotypes expected to alter hyperspectral reflectance. In aggregate, these results suggest that an unsupervised, autoencoder‐based approach can identify meaningful and genetically controlled variation in high‐dimensional, high‐throughput phenotyping data and link identified variables back to known plant traits of interest.more » « less
-
Mathivanan, Ramesh Kanna; Pederson, Connor; Turkus, Jonathan; Shrestha, Nikee; Torres-Rodriguez, J Vladimir; Mural, Ravi V; Obata, Toshihiro; Schnable, James C (, bioRxiv)ABSTRACT Plants exhibit extensive environment-dependent intraspecific metabolic variation, which likely plays a role in determining variation in whole plant phenotypes. However, much of the work seeking to use natural variation to link genes and transcript’s impacts on plant metabolism has employed data from controlled environments. Here we generate and employ data on variation in the abundance of twenty-six metabolites across 660 maize inbred lines under field conditions. We employ these data and previously published transcript and whole plant phenotype data reported for the same field experiment to identify both genomic intervals (through genome-wide association studies) and transcripts (through both transcriptome-wide association studies and an explainable AI approach based on the random forest) associated with variation in metabolite abundance. Both genome-wide association and random forest-based methods identified substantial numbers of significant associations including genes with plausible links to the metabolites they are associated with. In contrast, the transcriptome-wide association identified only six significant associations. In three cases, genetic markers associated with metabolic variation in our study colocalized with markers linked to variation in non-metabolic traits scored in the same experiment. We speculate that the poor performance of transcriptome-wide association studies in identifying transcript-metabolite associations may reflect a high prevalence of non-linear interactions between transcripts and metabolites and/or a bias towards rare transcripts playing a large role in determining intraspecific metabolic variation.more » « less
An official website of the United States government
